Using Euler's identity ONLY, how do I express the complex division in form re^im. Any ideas?
Complex number division (a+ib) / (c+id) can be expressed as re^im.?
(a+ib) / (c+id)
= (a+ib) (c-id)/ (c^2+d^2)
= (ac+bd)/(c^2+d^2) - [(bc-ad)/(c^2+d^2)]i
= Re + Im i, where Re = (ac+bd)/(c^2+d^2), and Im = -(bc-ad)/(c^2+d^2)
r = sqrt(Re^2+Im^2)
m = arctan(Im/Re)
(a+ib) / (c+id) = re^im
------
Ideas: Find real part and imaginary part first.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment